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ABSTRACT 

EPIC's (Erosion Productivity Impact Calculator) wind 
erosion submodel is described in terms of the 

equations and concepts needed for interfacing the wind 
erosion equation with EPIC. The required equations are 
presented following an analysis of the wind erosion 
equation literature which shows how the wind erosion 
equation was developed from short-term data. This 
analysis is based on viewing the soil loss as a time and 
space integration of a surface soil flux. The wind erosion 
equation is then partitioned into those parts that 
represent the short-term effects and the integration 
process. From this it is seen how one might ideally 
modify the wind erosion equation. The analyses point the 
way for future improvements in soil loss prediction 
equations. The results of the five 50-yr simulations are 
also presented. 

INTRODUCTION 

The objective of the study considered here is the 
adaptation of the wind erosion equation (Woodruff and 
Siddoway, 1965; Skidmore and Woodruff, 1968; 
Skidmore, 1976), which predicts annual average soil loss 
for a single crop, for use in the erosion productivity 
impact calculator (EPIC) (Williams et al., 1982). EPIC, 
which simulates the long-term effects of soil loss due to 
wind and water erosion, computes at a daily rate and 
considers multiple crops per year. The wind erosion 
equation, therefore, needs changes to allow adaptation 
of soil loss expressed in tons/( acre-year) to metric 
tonnes/(hectare-day) and inclusion of a method to 
simultaneously handle a growing crop and residues from 
previous crops. Of particular significance is the required 
time transformation from a 1-yr average to a 1-day 
average. 

In the following sections, the basic structure of the 
wind erosion equation is reviewed as an aid to 
comprehending the methods used in adapting the 
equation for use in EPIC. The methods are then 
discussed, followed by a brief description of the 
implementation. Finally, some numerical results from a 
typical EPIC simulation run are analyzed for 
reasonableness. 
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WIND EROSION EQUATION 

General Concepts 
The wind erosion equation was originally developed as 

a prediction and design tool to allow estimation of soil 
loss and the effect of various conservation practices in 
reducing soil loss. Consequently, the units of 
measurement were chosen to be easily grasped. For 
example, since soil loss is cyclic with a yearly period, the 
year was a natural choice. 

The variable chosen to express soil loss, E, has the 
units of a soil loss flux. However, since it is defined as a 
potential average annual soil loss (Woodruff and 
Siddoway, 1965), E represents the temporal and spatial 
average of f, the "point'' flux. E cannot vary in the time 
interval of 1 yr or over the space of a given field. It can 
only vary due to different levels of its five factors: I, K, C, 
L, and V. (All symbols are defined in Table 1). Actually, 
these factors are functions of other variables. 

Since E is an average flux in space and time, then for 
an erodible field of area A for time duration T we have 

[ la ] 
m = / T / A f(x^y»t) dx dy dt 

and finally 

E = m/(AT) [ i b ] 

(The geometry for a rectangular field of area A, (A = 
iw), is depicted in Fig. 1.) It should be noted from 
equation [la] that the shape of the area over which the 
averaging is performed is contained in the limits of 

^ EAST 

Fig. 1—A plan view of a rectangular field, relative to north, showing 
the defining angles and the wind reference coordinate system (x, y). 
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TABLE 1. NOTATION. M, L, AND T REFER TO THE DIMENSIONS OF MASS, LENGTH, AND TIME. 

Symbol Definition and dimensions Symbol Definition and dimensions 

area of the erodible field, L2 , or the angle between w and 
the positive x axis, dimensionless 
top surface of a control volume for the soil loss system, L2 

defined below equation [7 ] , dimensions unknown 
defined below equation [ 7 ] , dimensions unknown 
climatic factor, dimensionless 
parameter for function p, L/T 
a constant 
potential average annual soil loss, M V2 T""1 

product of I and K, M L ^ T " 1 

product of I, K, and C, M L~2 T"1 

E3 modified by L, M L ^ T " 1 

b 
C 
c 
c i 
E 
E2 
E3 
E4 
E5 
EPIC 

I 
K 
k 

L 
0. 

P 
Pi 
P 
Q 
q 

S 

acronym for erosion productivity impact calculator, the 
USDA soil loss-soil productivity simulator 
erosive wind energy for the i-th period, M L2T~2 

the normal component of the net soil flux vector along 
the ground surface, M L~2T_1 

a function; i is an integer subscript used to differentiate 
between functions. Most f j are defined in Fig. 2. 
soil erodibility, M L~2T""* 
soil ridge roughness, dimensionless 
k-th value of an index or parameter for function p, dimen­
sionless 
field length, a function, see equation [7 ] , L 
large dimension of a rectangular field, L 
soil loss, M 
mass flow rate of soil through a prescribed surface, M/T 
soil loss per unit area, M/L2 

upper limit of an index, dimensions vary 
power into soil loss system, M L2 T""3 

proportion of Rj in mixture, dimensionless 
a Weibull probability density function, T/L 
energy loss from soil loss system as heat, M L2 T"2 

integral of f along x within the limits of the field, M 
L - i T - i 
biomass (surface) density, dry weight of vegetative cover 
per unit area, M/L2 

erosive wind energy factor for the i-th period, dimension­
less 
small grain equivalent, small grain biomass surface den­
sity, M/L2 

T 
t 
u 
u e 
u t 

V 
w 
w 
WEE 
X 

Y 
y 

A 
e 

time interval, on the order of 1 year, T 
time, T, or metric tonnes, M 
wind velocity, L/T 
erosive wind velocity, L/T 
threshold velocity, the wind velocity below which no soil 
moves, L/T 
equivalent quantity of vegetative cover, M/L2 

work done in moving soil, M L2 T"~2 

small dimension of a rectangular field, L 
wind erosion equation 
relative field erodibility as defined in Chepil (1960), 
dimensionless 
distance along the field in the direction of the wind, L 
annual soil loss, as defined in Chepil (1960), M/L2 

distance perpendicular to x and z, L 
distance perpendicular to x and y, L 
the field angle relative to north, clockwise positive, di­
mensionless 
the field angle relative to the wind, counterclockwise 
positive from the positive x axis, dimensionless 
difference operator, dimensionless 
the direction of the wind vector relative to north, clock­
wise positive, dimensionless 
shear stress on z plane in x direction, M L""1 T""2 

Subscripts 
i index 
k k-th value of an index 
m mixture 
n upper limit of index, dimensions vary 
r reference 
t total 
Superscripts and other symbols 
A careted variable is time and or space dependent 

implies that the variable is a form of relative erodibility 
implies variable is a time rate of change 

< > ^ x an average of the function within the brackets with respect 
to an interval which is shown here as Ax. If the interval is 
unambiguous, it is omitted. 

£ defined 

integration, whereas the numerical value for A is 
contained in the denominator of the function, i.e., 
equation [lb]. Consequently, any equation that purports 
to compute an average flux must have the geometry 
implied. By analogy, the time interval is also implied. 
Also, because of these implications, there should be no 
time or space varying 'Variables'' in the integrated or 
average flux equation. Only parameters can exist, e.g., 
i , w, T, or perhaps the parameters of a probability 
distribution function of the wind vector. 

For any other geometry, a different functional 
relationship would exist for E. The implication is that a 
different wind erosion equation would be required for 
each shape, e.g., the existing wind erosion equation is 
not adequate for a circular field. However, since A and T 
are contained in the limits of integration of equation [la] 
and the divisor of equation [lb], the same f would apply 
for any shape or time duration. 

Woodruff and Siddoway (1965) and Skidmore and 
Woodruff (1968) imply that 

E = f 2 | v , f3(IK, IKC, L)J [2] 

Since equation [lb] and equation [2] are equivalent, 
there must exist a realtionship similar to equation [la] 
such that 

m = /T/A f4 <v< I* K< C, x) dx dy dt [ 3 ] 

where all or some of the independent variables are 
functions of space and/or time. The use of the caret on 

the factors implies that if an independent variable is 
present in equation [2], then some unknown functional 
form must exist at the flux level, i.e., f4, for each factor. 
This functional form could be identical to the uncareted 
form if the factor was independent of time and space, or 
almost so, in the sense that it would vary only slightly. 

Although f4 is unknown, it is instructive to analyze the 
structure of equation [2], utilizing the underlying 
concept of a flux function, i.e., f4. Perhaps one could 
then determine which factors (really functions) might be 
treated as independent of the 1-yr time duration implied 
in E and hence applicable to the 1-day time step 
computations of EPIC. 

A second problem, which is not unique to the EPIC 
application, can also be evaluated by this analysis. That 
is, how does one estimate L as used in equation [2] when 
it is observed that L depends on the period of averaging? 
Chepil et al. (1964) addressed this problem, with the 
resulting solution being modified by Skidmore (1965). 
For use in EPIC, the concept of L has to be further 
modified to allow for the daily time interval, yet allow for 
spatial averaging of some function related to L. This is 
essentially the spatial analog of the time step problem. 
Both problems will be analyzed in the following two 
sections. 

Time Scale Analysis 
Review of early wind erosion literature (Chepil and 

Woodruff, 1954, 1959; Chepil, 1959) indicates that most 
of the data that was used in the development of the wind 
erosion equation was based on wind tunnel studies. The 
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duration of time for which the soil mass was collected 
was in the order of minutes and the area was between 0.8 
to 8 m2. In fact, as Chepil (1959, page 214) indicated, the 
measurements in the wind tunnel were of such short 
duration, due to the limited amount of erodible soil in 
the sample trays, that the soil flow rate could not be 
measured. Instead, the mass of soil lost per unit area 
<m">AA was measured and used in computing I, the 
measure of relative erodibility. 

One problem in interpreting early forms of the wind 
erosion equation is that the term "erodibility" has been 
used in defining both relative and absolute measures of 
soil loss. Erodibility was dimensional (tons/acre) in 
Chepil and Woodruff (1959), dimensionless in Chepil 
(1959), and finally in Chepil (1962) and ever since, 
dimensional (tons/(acre-yr) ). The conversion from 
relative soil loss (dimensionless) to flux units was 
accomplished by a graph discussed by Chepil (1960) 
where he related a calculated relative field erodibility to a 
measured soil loss for 69 fields for three replicates of a 
4-month period. (He also presented an equation which, 
by today's standards, is not an accurate representation of 
the graph.) The calculated values of relative field 
erodibility were based on the methods outlined in Chepil 
(1959). The conversion graph, plotted as Fig. 1, page 144 
(Chepil, 1960), represents Chepil's method of relating 
short-term (minutes) soil loss data, i.e., q (Chepil, 1946) 
and <m">AA (Chepil and Woodruff, 1959) to E, which 
spans a 12-month period and areas that are wide and 
long compared to a wind tunnel. Hence, we have an 
equation or graph that accomplishes a change in time 
and length scales and a change from relative to absolute 
soil loss. Chepil's conversion equation performs the 
equivalent of averaging the flux f in y and t and 
completes the averaging in x. This can be expressed 
analytically in terms of q as 

l 
E = / T / y q dy dt [4] 

where 

Q = / f d x [5] 

where 
A = the area considered and 
T = 4 months. 

The basic data for the conversion equation while 
representing a 4-month time interval was scaled to 1 yr 
by using the occurrence rate of varying intensity dust 
storms as a weight factor. Since equation [4] is analogous 
to Chepil's conversion equation, it can therefore be 
concluded that relative field erodibility is related to q. 

This conversion equation was later modified by a 
factor of 1/3 (Chepil et al., 1962, page 165) because the 
climatic factor estimates for Garden City, Kansas during 
the 3-yr data collection period were 2.5 times greater 
than the 40-yr average (40 replicates) for which the C 
factor is defined. Additional unknown considerations 
caused the 2.5 to become 3. The final form of the 
conversion equation was that given in Chepil (1960) with 
the 1/3 factor, i.e., 

Y = (1/3) | 140 X0-287 -1/(0.01525 • 1.065X)}* [6] 

The first documented application of the original 
conversion data was that of Niles (1961). Niles used the 
factors for computing relative erodibility in a manner 
similar to Chepil (1959), except that it was converted to 
an absolute value via the use of Table 3 of Chepil (1960) 
as a final step. This application was contrasted with 
Chepil (1962) where the concept of relative erodibility 
was totally suppressed and was replaced with absolute 
values throughout the calculation procedure. 

Chepil evidently felt that equation [6] or its tabulated 
representation (Chepil, 1960, page 144) scaled by 1/3 
was adequate to transfer any relative erodibility, e.g., 
relative soil erodibility, relative surface erodibility, and 
relative field erodibility (Chepil, 1959, page 215) to an 
absolute amount. Consequently, he developed a new soil 
erodibility table which related I in absolute units to 
aggregate size (Chepil, 1962, Table 1). Approximate 
numerical values of the table can be generated by 
applying equation [6] to Table 2 of Chepil and Woodruff 
(1959). Skidmore (1976) first noted this particular use of 
the conversion equation. 

A more accurate method of determining I used the 
vertical scales of Fig. 5 of Chepil (1962). The numerical 
values of the relative and absolute erodibility were 
plotted on the vertical axis for the V factor equation. (It 
appears that Chepil modified his initial conversion graph 
(or equation) in order to develop this new function 
implied by the axis. We designate this new function as 
f6.) 

It is significant that Fig. 5 of Chepil (1962) depicted 
equation [6] in conjunction with an equation relating V 
to the relative soil erodibility. This was the second 
application of f6 to convert a relative erodibility to an 
absolute amount. In fact, perusal of Figs. 3 and 4 
(Chepil, 1962), which were related to the effect of soil 
ridge roughness and L on absolute erodibility, shows the 
same vertical scale as his Fig. 5. 

From this it can be seen that Chepil has taken the 
functions of I, K, L, and V in their relative forms and via 
f6 related them to absolute values. He obviously believed 
that the function could be applied to various kinds of 
erodibility to allow use of the relative factor equations for 
absolute values! 

Fig. 2 illustrates the sequence of calculations using the 
various factors and functions to arrive at E. This figure 
was deduced from the references cited in the figure title. 
It stresses the transition between relative and absolute 
erodibility as the calculations proceed. With the 
exception of f6 and I (Chepil and Woodruff, 1959), all 
functions were developed from short-term steady state 
wind tunnel and field data while maintaining K, L, and 
V constant. (Apparently, Chepil did not expect these 
functions to be related to the time rate of change of K, L, 
or V but only to their fixed levels.) 

The function f5 (Chepil and Woodruff, 1959), which 
generates I, was developed by transient measurements of 
<m">. However, after the soil had ceased blowing (in the 
order of minutes!) the value of <m"> became 
independent of time. Therefore, it is reasonable to 
conclude that the only function or factor in the wind 
erosion equation that is time-dependent is f6). 

*As noted previously, this equation does not adequately represent 
the graph and is not recommended for calculation purposes. It is used 
here for reference only. As noted later, Chepil used a modification to 
equation [6] to develop Fig. 5 of Chepil (1962). 
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Fig. 2—Flow of the wind erosion equation depicting the functional 
relationships between relative erodibility ( ) and absolute ( ). 
Parenthetical numbers refer to the following citations: (1) Chepil and 
Woodruff (1959), (2) Chepil (1962), (3) Woodruff and Siddoway 
(1965). 

It should not be implied that K, L, and V cannot 
change with time for use in the wind erosion equation in 
its relative form, i.e., f5, f7, and f8. However, K, L, and V 
cannot be allowed to change in the absolute form of the 
equation, i.e., the present wind erosion equation, due to 
f6. Of course, one could argue that during the collection 
of data for developing f6, K, L, V, and I were changing to 
come degree and hence some single values must have 
been used. Chepil (1960) does not make this clear, but 
Woodruff and Siddoway (1965, page 606) imply that the 
selection of values for K, L, and V should be based on a 
specific time interval called the ''severe blowing time." 
At any rate, considering the methods used in developing 
the subfunctions, changing values of K, L, and V would 
appear legitimate for short-term usage with athe wind 
erosion equation, provided that a new f6 could be 
developed. 

Length Scale Analysis 
Integration of f4 (equation [3]) and division by A and T 

results in equation [2], the wind erosion equation. As 
noted earlier, this averaging process must result in a 
wind erosion equation whose independent variables are 
parameters, such as the l o r w , that do not vary over A or 
during T. Consequently, L in equation [2] cannot vary in 
time or space. It must represent a function that 
influences E because: (a) q varies with Ax, the distance 
downwind bounded by the field geometry, (b) Ax varies 
with the field geometry and p, and (c) the limits of 
integration for q with respect to y also depend on the 
field geometry and p. Because p varies with time due to 
the wind angle changing (Fig. 1), L then is a function 
that must vary with the field geometry parameters and 
some wind angle parameters, e.g., 

L = L(2, w, a, a, b) [7] 

The parameters a and b result from characterizing the 
wind angle as a random variable in time whose yearly 
probability density function might have a two parameter 
distribution. These parameters would depend on the 
location of the field site. 

In the previous section it was argued that f7 (Fig. 2), 
which has L as its input, was developed from short-term 
data and hence could accept a time-varying input. 
Perhaps it would be better to replace L in Fig. 2 with Ax, 
the distance down the field, which can change with time, 
since f7 was initially developed using it. It is suspected 
that L became a function when Chepil (1962) applied f6 

to use short-term tunnel functions to predict long-term 
field losses. He was faced with the obvious fact that Ax 
would be changing during the 4-month interval of his 
experiment because of the wind vector changing its 
angle. However, even if he had not been considering time 
span differences, he would have had to resolve the 
problem that for any real rectangular field oriented at 
some angle to the wind there are an infinite number of 
"field lengths" as opposed to one field length for a 
tunnel. 

Chepil resolved this space integration problem (Chepil 
et al., 1964) by defining L as 

L = wsec A; 0° < A < 85° [ 8 ] 

where A is defined as the angle between side w of the 
field and the positive x axis and is called the prevailing 
wind erosion direction. L is essentially any chord which is 
of size L and parallel to the x axis. This value of L allows 
one to visualize the possibility of three subareas within 
the total area—those where the chord is constant and of 
value L and two equal areas where the chords are not 
constant and are less than L. Prediction of E based on an 
L computed from equation [8] will always overpredict, 
except when p is some multiple of TT/2, since some of the 
area has chords less than L. However, for the purpose for 
which the wind erosion equation was developed, i.e., for 
estimating the effect of conservation practices in 
reducing wind erosion, the equation is adequate. One 
other constraint is required to make equation [8] 
practical, i.e., 

wsec A L < (fi2 + w 2 ) l / 2 

£ esc A otherwise 
[9 ] 

Equation [9] puts limits on L so that it cannot become 
larger than the main diagonal of the rectangle. From this 
then, it can be seen that L will range from w to i as P (or 
angle A) varies through TT/2 radians, with a maximum as 
calculated from equation [9]. 

Chepil visualized the time-averaging effect by his 
concept of prevailing wind erosion direction, i.e., angle 
A (Chepil et al., 1964). This angle is determined by 
constructing a wind erosion rose, which is a set of 16 
normalized vectors whose magnitudes are proportional 
to the time weighted sum of the average velocity cubed. 
By selecting the maximum vector which would fit within 
the rose, one assigns the angle of this maximum vector as 
the angle A. Here we see not only time influencing the 
selection of "the angle" but also a weight factor of the 
cube of the average velocity. It is interesting to note that 
Chepil et al. (1964) and Bondy et al. (1980) both used a 
form of an energy factor to apportion yearly soil loss. 
Chepil et al. (1964) apportioned within an arc and Bondy 
et al. (1980) within a time interval. 

Skidmore (1965) and Skidmore and Woodruff (1968) 
made two modifications to Chepil's method of 
determining L. First, they determined the prevailing 
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wind direction by decomposing the 16 normalized vectors 
into tangential and normal components about an 
arbitrary coordinate system. The sum of the magnitudes 
of the normal components divided by the sum of the 
magnitudes of the tangential components was then 
maximized by rotating this new coordinate system. The 
resultant angle between the x axis and east was 
considered the prevailing wind direction. 

Skidmore (1965) did not use this angle to substitute 
into equation [8] to determine a single L, but instead 
used his prevailing wind direction angle in conjunction 
with his field angle and 16 vector angles to determine 16 
field lengths by application of equation [8]. To each 
length he assigned a probability based on the relative 
energy computed for each L and consequently developed 
a cumulative probability density function. From this he 
selected a median value of L which was designated as 
"the equivalent field width". This latter width was used 
as the L in equation [2], 

It appears that Skidmore's use of a distribution 
function over space would approximate more closely the 
idea of integrating over the field than the selection of a 
worst case L. 

Vegetative Factor Analysis 
The effect of vegetation on relative soil loss is 

represented in the wind erosion equation by f8 of Fig. 2, 
i.e., 

E5 = E4 1.75"V [10] 

where 

V = Vi(R) [11] 

and i indexes the combinations of crop, height, and 
orientation. Typical graphs of equation [11] can be 
found in Woodruff and Siddoway (1965) for small grain 
and sorghum. Subsequent publications (Woodruff et al., 
1974; Lyles and Allison, 1980, 1981) have not presented 
vegetative functions but have developed "small grain 
equivalence" curves. This concept implies that for any 
given E5, there is a single value of R for each V4 (which 
are most likely different) which has an equivalent effect 
on inhibiting soil loss. By adapting a reference i, a single 
vegetative function can be used in equation [10], if the 
equivalent values for different i's are used with it. This 
equivalence concept implies that 

v i ( R i ) = V2 (R2 ) . . . = Vr (Rr) [12] 

By solving equation [12] for Rr, we have 

R r i = V r - 1 | v i ( R i ) | , i = i , 2 [13] 

or equivalently 

i - rj 

which are called small grain equivalence curves, since the 
reference adopted is flat small grain (Lyles and Allison, 
1981). It appears that this concept was first used by 
Craig and Turelle (1964) so that their graphical form of 
the wind erosion equation could have Rr as a parameter 
rather than Vt. 

In the initial formulation of the wind erosion equation 
(Woodruff and Siddoway, 1965), multiple simultaneous 
vegetative cover is not considered. In fact, the crop and 
its condition is that which exists during "severe blowing 
time." Craig and Turelle (1964) and Lyles and Allison 
(1980) considered multiple cover by computing a mixture 
small grain equivalent (Sm), i.e., equation [3] from Lyles 
and Allison (1980) is: 

n 
S m = n (S i t)

Pi [14] 
i=l 

where 

n 
Pi = R i / £ Ri [15] 

i=l 

n 
2 Pj= 1 [16] 

i=l 

and Sit is the small grain equivalent for crop i, based on 
the total mixture weight. Equation [14] is a weighted 
product which satisfies the following two criteria, 

( S i t W n ^ s m ^ <sit)max [17J 

and 

s m "* Sk ; i = 1, 2 k n [18a] 

as 

Pk -* 1 [18b] 

Craig and Turelle (example F-3, page 30, 1964) used a 
simple sum, i.e., 

S m = S1 + S 2 [19] 

Here each St was computed based on its own weight 
rather than the total for the mixture. The use of Sit in 
equation [14] guarantees the effect shown in equation 
[17], which would not be true if the component weights 
had been used. The inherent assumption in equation [19] 
is that the concept of equivalency, i.e., equation [12], is 
also true when the components are mixed. This 
assumption appears to be questionable. 

A more general approach to computing the effect of 
mixtures should be based on equation [10], which is 
related to soil loss, rather than equivalency of either W{ or 
S. Other methods of combining component equations 
such as a linear combination, e.g., 

n 
E5m = 2 Pj E 5 i t [ 2 0 ] 

i=l 

cannot be justified any more than the product form 
implied in equation [14] until more data are available. 

Modifications 
EPIC provides the framework to sum the effects of the 

various factors that affect soil loss and hence 
productivity. From the point of view of soil loss by wind, 
this is equivalent to summing the daily soil loss surface 
density. This is expressed analytically by rearranging 
equation [4] into 

E E P I C = — 2 < A Jy / A t . q dt dy > [21] 
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where the bracketed quantity represents the daily soil 
loss per unit area, m-'and T the simulation period. 

From the arguments presented in the previous 
sections, it can be visualized that the modifications to the 
wind erosion equation must produce the equivalent of 
the daily soil loss surface density shown in brackets in 
equation [21]. EPIC does the summation for n days, 
where n is chosen prior to simulation. 

Equation [21] has the order of integration of t and y 
reversed, as compared to that in equation [4]. This 
implies that the q as computed does not change during 
the day, i.e., it is a daily average. This assumption then 
restricts the y integration for a fixed wind angle, 0, which 
results in a simple computation of L, in that there is only 
one integration over the field in the y direction for 1 day. 

In essence, the problem of inputs changing over the 
period of computation has been simplified but not 
changed. Variables such as I, K, and V can now be 
considered essentially constant for a single day, but L 
will change as it is easily visualized that Q and u are 
changing on a shorter time scale than EPICs 
computation iteration rate of 1 day. Hence we are faced 
with converting q to some daily average value. This is 
similar to Chepil's problem of how to convert from short-
time, essentially continuous, relative soil loss with fixed 
input variables to absolute soil loss for a year. Here we 
have to go from short-term to 1 day rather than 1 yr, but 
the problem remains since the description of the wind 
variable that drives the soil loss still fluctuates 
considerably during the 1-day period. 

The justification is based on the argument used in 
calculus when passing to a limit, i.e., that a sum based 
on finite increments becomes exactly equal tc the 
integral as the differential approaches zero. This is 
identical to the justification of approximating solutions 
to differential equations by finite differences. Here then 
we claim that long-term calculations of soil loss based on 
daily averages will approach that based on the original 
experimental short-term data more closely than a single 
calculation for 1 yr. 

The above argument presupposes that q is available! 
This is hardly the case, although from the discussions 
related to Fig. 2 it might be concluded that q is 
obtainable from the wind erosion equation by "peeling'' 
off f6. Due to the present uncertainty as to how some of 
the core functions, f5, f7, f8, and K, were developed, this 
is not deemed practical. Also, the problem of 
transforming from a "relative soil loss" to an absolute 
would have to be resolved. The latter, under the time 
constraints of building EPIC, was virtually impossible. 

Another approach, based on the method used by Niles 
(1961), appears to be a reasonable approximation to 
obtaining a daily integration of q with time from the 
wind erosion equation. Niles (1961) computed the 
relative soil loss and as a final step converted to absolute 
amounts via Table 3 of Chepil (1960). While we know f6 

and could apply it in its inverse form to get a relative 
erodibility, we would not be any better off since we are 
back to a relative quantity. What is needed, then, is a 
relationship which, when applied to E, would 
approximate the integration function of f6 and not its 
relative to absolute transformation capability. 

The best available function that would approximate 
this desired function is that involving a single 
multiplication factor called the erosive wind energy 
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factor (Bondy et al., 1980). We have extended this 
concept by shortening the periods of interest from 
months to a single day. Bondy et al. (1980) used a 
monthly factor to subdivide E while allowing the I, K, L, 
and V factors to take on values for the periods under 
consideration. 

The assumption that the soil loss is directly 
proportional to the erosive wind energy is implied by 
equation [22] which computes period average soil loss 
flux, i.e., 

E i = r i E [ 2 2 ] 

where r{ is the erosive wind energy factor for the i-th 
period. If E has units of t/(ha-yr), then E4 has units of 
t/(ha-day). 

To utilize equation [22] with equation [21] requires 
that m"be determined, i.e., 

m-' = Atj E j . 

However, since At} in EPIC is 1 day, both variables are 
numerically equal and, consequently, Ej can be summed 
as if it were m{[ 

The erosive wind energy factor is calculated as 

n 
r i = e i / 2 e i [ 2 3 ] 

i=l 

where 

e i = / A t i W d t [ 2 4 ] 

or equivalently 

e i = C j < u e
3 > i A t i [ 2 5 ] 

Equation [25] is derived from equation [24] by 
expressing the work rate, W in terms of the steady state 
form of the first law of thermodynamics, i.e., 

i p - Q u > u t 

W = < [ 2 6 ] 
/ 0 u < u t 

w h e r e 

p = / A 3
 r zx< z ) u<z> d x dy [27] 

and Q is zero for all u > ut. Equation [27] expresses the 
total power flow into a rectangular control volume that 
represents the boundaries of a one-dimensional fluid 
flow soil loss system. 

For application to EPIC, equations [22], [23], and [25] 
are used, with the index i representing the i-th day and 
the upper limit n in equation [23] the number of days in a 
year. The value of <u3

e> on a daily basis is computed 
using a regression equation relating it to <u>. This 
regression equation was developed from the following 
two equations, assuming that the daily windspeed is 
distributed as a two parameter Weibull distribution p, 
i.e., 

< u e > = J u t
 u 3 P ( u , k , c ) d u [ 2 8 ] 

where 
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Fig. 3—A block diagram of the wind erosion submodel and its 
interfaces within EPIC. 

k ^ 2 

c ^ l . 1 2 <u> .[29] 

Equation [28] is derived from the standard definition of 
the third moment of the distribution p. For erosive wind, 
the integration is for all values greater than the threshold 
value, ut. Fig. 3 illustrates how these modifications fit 
into the wind erosion submodel. 

Having now dealt with the time integration of q in 
equation [21], the integration with respect to y must be 
considered. If, as in the previous argument, we claim 
that the application of the erosive wind energy factor 
approximates to removing the time integration from E, 
we might also attribute it with the capability of removing 
the crosswind or y component of integration. Recall that 
prior to the application of f6, the "width" of the relative 
erodibility was that of a tunnel or narrow field strip and, 
therefore, L was independent of y. 

An alternate hypothesis would be that because Chepil 
et al. (1964) utilized a single worst case L, i.e., equation 
[8], the value of E would imply a rectangular field of 
width w and length L that is aligned on the L side with 
the average wind vector. Here again L is independent of 
y. In other words, to get the effect of varying L into E, the 
effect was accomplished external to the wind erosion 
equation! 

To properly incorporate the effect of a varying L with y 
would require integration of equation [22] over y for each 
day or equivalently for each field angle p. This would be 
equivalent to perhaps 10 to 20 computer solutions of 
equation [22] per time step, depending on the size of Ay. 

By adopting a scheme where "an L" is selected that 

yields the "correct answer", one can reduce the number 
of computations. This is in essence what Chepil implies 
by his worst case estimate and also what Skidmore (1965) 
implies by his time weighting concept. 

Since neither approach appears to be founded upon 
actual integration of q with y, it appears that any 
reasonable scheme that satisfies 

0 < L < (C2 + w2)1/2 
. [ 30 ] 

would be an adequate approximation. We selected an 
average of the chords as they vary in y, which for a 
rectangular field of i and w oriented at (1 is 

£w 

w|cos|3|+ 2|sin 0| .[31] 

While equation [31] is arbitrary, it does satisfy the 
criteria of equations [30] and [7] and is simple to 
compute. 

Finally, we come to the method used in EPIC to 
simultaneously handle the effects of a growing crop and a 
residue from a previous crop. 

Due to the paucity of mixture data, a modification of 
the method of Lyles and Allison (1980) was proposed. 
That is 

S m = S PjSfc 
i=l 

. [ 32 ] 

However, based on a further simplification in the 
functional form of S4, the actual implementation into 
EPIC takes the form of equation [19]. That is, assuming 
that the St are linear over the range of interest, then 
equation [32] degenerates to a sum of S{. 

SIMULATION RESULTS 

No measured data sets of erosion amounts are 
available for validating EPIC modifications of the wind 
erosion equation (WEE). Using representative soils, crop 
rotations, and management operations for various states 
in the Midwest, Great Plains, and West, we compared 
erosion amounts between EPIC and the WEE using 
current procedures (Bondy et al., 1980). We chose four 
locations to give geographic coverage and five crop 
rotations common to those locations (Table 2). 

Except for rotation 4, the WEE amounts were larger 
than those estimated by EPIC. However, agreement 
between EPIC and WEE for rotations 2 and 3 was 
excellent, fair for rotations 1 and 5, but poor for rotation 
4. 

Possible reasons for differences between the two 
methods of estimating wind erosion include: 

TABLE 2. WIND EROSION ESTIMATES FROM EPIC AND WEE FROM SELECTED CROP ROTATIONS 
AND LOCATIONS IN THE U.S. 

1. 
2. 
3 . 
4 . 

5. 

Crop rotation— 
number, sequence 

Corn-soybeans 
Wheat-corn-fallow 
Irrigated corn 
Wheat-alfalfa-
alfalfa 
Wheat-wheat-fallow-
grain sorghum 

Location— 
county, state 

Monona, IA 
Redwillow, NE 
Sherman, KS 
Curry, NM 

Curry, NM 

Soil 

Luton silty clay 
Keith silt loam 
Keith silt loam 
Amarillo loamy 
fine sand 
Amarillo laomy 
fine sand 

Av. estimated soil loss 
EPIC* 

t/(ha 
7.3 ± 3.0 
0.13 ± 0.21 
6.0 ± 4.3 

71.3 + 29.3 

29.3 ± 24.6 

• yr) 

WEE 

12.1 
0.23 
6.2 

25.2 

37.2 

* 50-year average. 

1764 TRANSACTIONS of the ASAE—1983 



1. EPIC uses mixing coefficients for various 
management (tillage) operations for distributing crop 
residue among buried, flat, and standing dead biomass 
categories. Some residues are always left in the standing 
dead category regardless of tillage operation. In using 
the WEE, we assumed that certain tillage operations 
(e.g., moldboard plowing and disking) flattened all the 
residues. Flattened residues are not as effective as 
standing residues in controlling wind erosion. 

2. EPIC has residue decomposition equations that 
are applied daily. In the WEE, an average overwinter 
residue loss, usually 15 to 30%, is applied at the end of 
the winter period in the rotation. 

3. Simplified forms of the small-grain equivalent 
equation are used in EPIC, while the original equations 
are used in solving the WEE. 

4. Simulated wind data are used in EPIC. Actual 
long-term average data are used in the WEE. 

5. A daily L factor is applied in EPIC, whereas a 
weighted approach by periods is used to determine L for 
application in the WEE. 

The large difference in rotation 4 is apparently due to 
EPIC's incorrect handling of dry matter production 
during establishment and early growth of perennial 
crops—in this case, alfalfa*(Jimmy Williams, personal 
communication). 

Our interest in this paper is not to assess the validity of 
EPIC. However EPIC's above-ground (biomass) 
production (excluding grain) has a major impact on wind 
erosion estimates. Except for alfalfa, we used average 
biomass outputs of EPIC in solving the WEE. 
Consequently, values in Table 2 are not realistic unless 
EPIC accurately predicts dry matter production. 

CONCLUSIONS 
The 50-yr simulation results of EPIC compare 

favorably with the wind erosion equation calculation of 
soil loss for the period of the crop rotation sequences. 
These results suggest that the use of the erosive wind 
energy factor (Bondy et al., 1980) can be extended to a 
daily time interval when the daily soil losses are 
recombined for a long-term prediction. It further 
appears that the simulated daily wind velocity is 
adequate for computing the erosive wind energy factor 
and that the methods used for computing L and V are 
also adequate. 

Based on the wind erosion equation analyses, it is clear 
that any future soil loss prediction equations must 
include three things. First, the physics of the erosion 
process must be represented as either a point flux f or a 
line intensity q (equation [5]), the former being the ideal. 
Second, any variables that affect f or q must be described 
independently in time and space (e.g., f4 in equation [3]). 
This implies that the functional relationships are either 
given for a specific case or that they are agreed upon as 
representative for predictive purposes. It is at this flux 

level that the time and space variability must be 
considered and the physics is specialized to a given field 
location. Finally, the actual integration is accomplished 
(equations [3] or [4]) only when the field boundary, the 
nonerodible boundary, and the time interval are 
specified. Obviously, the initial surface conditions are 
also required. 

Any algebraic equation which predicts soil loss cannot 
have any variables (i.e., parameters) which change 
during the time interval implied by that equation. 
Furthermore, the equation applies only to the field shape 
for which the integration was performed. 
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